M1. (a) K
(b) Decreases
(c) use a metre rule / 30 cm ruler to measure across 10 (projected) waves accept any practical number of waves number for 10
and then divide by 10
(d) $1.2 \mathrm{~cm}=0.012 \mathrm{~m}$
$18.5 \times 0.012=0.22(2)(\mathrm{m} / \mathrm{s})$
allow 0.22(2) with no working shown for 2 marks
typical walking speed $=1.5 \mathrm{~m} / \mathrm{s}$
accept any value e.g. in the range 0.7 to $2.0 \mathrm{~m} / \mathrm{s}$
so the water waves are slower (than a typical walking speed)
this cannot score on its own

M2. (a) (i)
correct order essential
($\mathbf{A}=$) a microphone
$(\mathrm{B}=)$ an oscilloscope
\quad or cathode ray oscilloscope or CRO
(ii) the amplitude
accept any unambiguous indication
(iii) quieter / softer do not accept less (which could refer to the amplitude, frequency or wavelength)
(b) sound cannot travel through a vacuum / (empty) space / free space accept there is no medium for the sound to travel through
(because) there is / are nothing / no particles to vibrate accept (because) there is / are nothing / no particles between them and the source (of the sound)

M3. (a) (i) 25 (\%) do not accept $1 / 4$
(ii) increases
(b) tick $\left(v^{\prime}\right)$ in top and bottom box
both required
(c) SHINY surfaces are good reflectors of infra-red radiation accept white for shiny
or black surfaces are POOR reflectors of infra-red radiation accept bad for poor accept insertion of 'not' before 'good' in statement or black surfaces are good EMITTERS of infra-red radiation or black surfaces are good ABSORBERS of infra red radiation

M4. (a) (i) J and L
both required, either order
(ii) K
(iii) \mathbf{L}
highest frequency
reason does not score if L not chosen accept most waves (on screen) do not accept frequency above $20000(\mathrm{~Hz})$ do not accept cannot hear it
(b) transmitter detector computer all three in correct order allow 1 mark for one correct

M5. (a) vibrate
dirt / muck / grit / rust / dust etc.
do not accept bacteria
(b) any one medical use eg ignore incorrect biological detail

- scanning unborn babies
- destroying (kidney) stones
(c) (i) 2
(ii) C

M6. (a) (i) bat(s)
(ii) any example in the inclusive range $5 \leftrightarrow 29 \mathrm{~Hz}$ / hertz appropriate number and unit both required
(b) (i) A, C, D
all three required and no other
(ii) D, E
both required and no other
(c) sound cannot travel through a vacuum / (empty) space / free space accept there is no medium (for the sound to travel through) do not accept there is no air (for the sound to travel through)
(because) there is / are nothing / no particles to vibrate
accept because there is / are nothing / no particles between
them and the source (of the sound)

M7. (a) (i) wavelength
accept frequency accept speed
(ii) amplitude $\quad \begin{aligned} & \text { accept energy } \\ & \text { height is insufficient }\end{aligned}$
(iii) sound
(b) 0.12
allow 1 mark for correct substitution, ie 8×0.015 provided no subsequent step shown
metre per second or m / s or metre/second do not accept mps units must be consistent with numerical answers

M8. (a) pitch
loudness
(b) (i) as length (of prongs) decreases frequency / pitch increases accept converse accept negative correlation ignore inversely proportional
(ii) 8.3 (cm)
accept $8.3 \pm 0.1 \mathrm{~cm}$
(iii) $\quad(8.3 \mathrm{~cm}$ is) between $7.8(\mathrm{~cm})$ and $8.7(\mathrm{~cm})$ ecf from part (ii)
(so f must be) between $384(\mathrm{~Hz})$ and $480(\mathrm{~Hz})$
$410(\mathrm{~Hz}) \leq f \leq 450(\mathrm{~Hz})$
if only the estimated frequency given, accept for 1 mark an
answer within the range
(c) (i) electronic
(ii) frequency is (very) high
accept frequency above
$20000(\mathrm{~Hz})$ or audible range
(d) $\quad 285.7(\mathrm{~Hz})$
accept any correct rounding 286, 290, 300
allow 2 marks for 285
allow 2 marks for correct substitution $0.0035=1$ /f
allow 1 mark for $T=0.0035 \mathrm{~s}$
allow 1 mark for an answer of 2000

